Substitute F1=0.6125 F2 into the equilibrium equation and solve for F2:

MA=(0.6125) F2 (380 mm)+F2 (760 mm)-P(1,520 mm)=0            (992.75 mm)F2=P(1,520 mm)

F2 =(1.5311) P    =(1.5311)(36 kN)    =55.12 kN

Backsubstituting F2 into the equation F1=0.6125 F2 gives:

F1 =(0.6125) F2    =(0.6125)(55.12 kN)    =33.76 kN