Substitute F1=0.6125 F2 into the equilibrium equation and solve for F2:
∑MA=(0.6125) F2 (380 mm)+F2 (760 mm)-P(1,520 mm)=0 ∴ (992.75 mm)F2=P(1,520 mm)
F2 =(1.5311) P =(1.5311)(36 kN) =55.12 kN
Backsubstituting F2 into the equation F1=0.6125 F2 gives:
F1 =(0.6125) F2 =(0.6125)(55.12 kN) =33.76 kN