Substitute F1=-0.14F2 into the equilibrium equation and solve for F2:

MC=-(0.14)F2(750 mm)-F2(300 mm)-P(400 mm)=0

       =(-405 mm)F2=P(400 mm)                               F2=-(0.98765)P                                  =-(0.98765)(80 kN)                                  =-79.012 kN

Because we initially assumed F2 was in tension, the negative sign in the answer indicates that F2 is actually in compression.

Backsubstituting F2 into the equation F1=-0.14F2 gives:

F1=-(0.14)F2   =-(0.14)(-79.012 kN)   =11.077 kN